scholarly journals Spline approximation of thin shell dynamics

Author(s):  
R. C. H. Del Rosario ◽  
R. C. Smith
2018 ◽  
Vol 936 ◽  
pp. 19-35 ◽  
Author(s):  
Robert B. Mann ◽  
Ian Nagle ◽  
Daniel R. Terno
Keyword(s):  

2008 ◽  
Vol 78 (4) ◽  
Author(s):  
J. P. Krisch ◽  
E. N. Glass

2012 ◽  
Vol 27 (1) ◽  
pp. 95-101
Author(s):  
Shi-Bin LIU ◽  
Chun-Ying YANG ◽  
Zhong-Lin ZHANG ◽  
Dong-Hong DUAN ◽  
Xiao-Gang HAO ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 110-123
Author(s):  
Gaël Kermarrec ◽  
Hamza Alkhatib

Abstract B-spline curves are a linear combination of control points (CP) and B-spline basis functions. They satisfy the strong convex hull property and have a fine and local shape control as changing one CP affects the curve locally, whereas the total number of CP has a more general effect on the control polygon of the spline. Information criteria (IC), such as Akaike IC (AIC) and Bayesian IC (BIC), provide a way to determine an optimal number of CP so that the B-spline approximation fits optimally in a least-squares (LS) sense with scattered and noisy observations. These criteria are based on the log-likelihood of the models and assume often that the error term is independent and identically distributed. This assumption is strong and accounts neither for heteroscedasticity nor for correlations. Thus, such effects have to be considered to avoid under-or overfitting of the observations in the LS adjustment, i.e. bad approximation or noise approximation, respectively. In this contribution, we introduce generalized versions of the BIC derived using the concept of quasi- likelihood estimator (QLE). Our own extensions of the generalized BIC criteria account (i) explicitly for model misspecifications and complexity (ii) and additionally for the correlations of the residuals. To that aim, the correlation model of the residuals is assumed to correspond to a first order autoregressive process AR(1). We apply our general derivations to the specific case of B-spline approximations of curves and surfaces, and couple the information given by the different IC together. Consecutively, a didactical yet simple procedure to interpret the results given by the IC is provided in order to identify an optimal number of parameters to estimate in case of correlated observations. A concrete case study using observations from a bridge scanned with a Terrestrial Laser Scanner (TLS) highlights the proposed procedure.


2008 ◽  
Vol 26 (3) ◽  
pp. 449-453 ◽  
Author(s):  
H. Yang ◽  
K. Nagai ◽  
M. Nakai ◽  
T. Norimatsu

AbstractCapsules with a thin aerogel shell were prepared by the OO/W/OIemulsion process. (Phloroglucinol carboxylic acid)/formaldehyde (PF) was used as the water phase (W) solution to form the shell of the capsule. PF is a linear polymer prepared from phloroglucinol carboxylic acid. The viscosity of the PF solution can reach a high level of 9×10−5m2/s without gelation while resorcinol/formaldehyde (RF) gelates at ~3–4×10−5m2/s. Using the viscous PF solution, capsule with a 17 µm gel shell was fabricated. This thickness satisfies the specification of the first phase of Fast Ignition Realization Experiment (FIREX-I) at Osaka University. When PF gel was extracted to remove the organic solvent, shrinkage of 9% occurred. The final density of the PF aerogel was 145 mg/cm3. Both the shell thickness and density can satisfy the specification of FIREX-I. The pore size of the PF aerogel was less than 100 nm while that of RF was 200–500 nm. The SEM showed that PF had particle-like foam structure while RF had fibrous-like foam structure.


Analysis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Siran Li

AbstractIt is a well-known fact – which can be shown by elementary calculus – that the volume of the unit ball in \mathbb{R}^{n} decays to zero and simultaneously gets concentrated on the thin shell near the boundary sphere as n\nearrow\infty. Many rigorous proofs and heuristic arguments are provided for this fact from different viewpoints, including Euclidean geometry, convex geometry, Banach space theory, combinatorics, probability, discrete geometry, etc. In this note, we give yet another two proofs via the regularity theory of elliptic partial differential equations and calculus of variations.


Sign in / Sign up

Export Citation Format

Share Document